- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
ADAMS, COLIN (1)
-
Adams, Colin (1)
-
BONAT, ALEXANDRA (1)
-
Bonat, Alexandra (1)
-
CHANDE, MAYA (1)
-
CHEN, JOYE (1)
-
Chande, Maya (1)
-
Chen, Joye (1)
-
JIANG, MAXWELL (1)
-
Jiang, Maxwell (1)
-
ROMRELL, ZACHARY (1)
-
Romrell, Zachary (1)
-
SANTIAGO, DANIEL (1)
-
SHAPIRO, BENJAMIN (1)
-
Santiago, Daniel (1)
-
Shapiro, Benjamin (1)
-
WOODRUFF, DORA (1)
-
Woodruff, Dora (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ADAMS, COLIN; ROMRELL, ZACHARY; BONAT, ALEXANDRA; CHANDE, MAYA; CHEN, JOYE; JIANG, MAXWELL; SANTIAGO, DANIEL; SHAPIRO, BENJAMIN; WOODRUFF, DORA (, Mathematical Proceedings of the Cambridge Philosophical Society)Abstract In 2010, Turaev introduced knotoids as a variation on knots that replaces the embedding of a circle with the embedding of a closed interval with two endpoints which here we call poles. We define generalised knotoids to allow arbitrarily many poles, intervals and circles, each pole corresponding to any number of interval endpoints, including zero. This theory subsumes a variety of other related topological objects and introduces some particularly interesting new cases. We explore various analogs of knotoid invariants, including height, index polynomials, bracket polynomials and hyperbolicity. We further generalise to knotoidal graphs, which are a natural extension of spatial graphs that allow both poles and vertices.more » « less
An official website of the United States government
